How to Treat Heat as like Light

Category: Photography & Branding

A Massachusetts Institute of Technology (MIT) researcher has developed a technique that provides a new way of manipulating heat, allowing it to be controlled much as light waves can be manipulated by lenses and mirrors. 

The approach relies on engineered materials consisting of nanostructured semiconductor alloy crystals. Heat is a vibration of matter—technically, a vibration of the atomic lattice of a material—just as sound is. Such vibrations can also be thought of as a stream of phonons—a kind of "virtual particle" that is analogous to the photons that carry light. The new approach is similar to recently developed photonic crystals that can control the passage of light, and phononic crystals that can do the same for sound.

Heat differs from sound, he explains, in the frequency of its vibrations: Sound waves consist of lower frequencies (up to the kilohertz range, or thousands of vibrations per second), while heat arises from higher frequencies (in the terahertz range, or trillions of vibrations per second). "Phonons for sound can travel for kilometers," Maldovan says—which is why it's possible to hear noises from very far away. "But phonons of heat only travel for nanometers [billionths of a meter]. That's why you couldn't hear heat even with ears responding to terahertz frequencies."

Heat also spans a wide range of frequencies, he says, while sound spans a single frequency. So, to address that, Maldovan says, "the first thing we did is reduce the number of frequencies of heat, and we made them lower," bringing these frequencies down into the boundary zone between heat and sound. Making alloys of silicon that incorporate nanoparticles of germanium in a particular size range accomplished this lowering of frequency, he says. 

As a result, this beam of narrow-frequency phonons can be manipulated using phononic crystals similar to those developed to control sound phonons. Because these crystals are now being used to control heat instead, Maldovan refers to them as "thermocrystals," a new category of materials. These thermocrystals could instead produce the equivalent of those ripples only moving out in a single direction. Such a one-way heat flow could be useful in energy-efficient buildings in hot and cold climates.

Other variations of the material could be used to focus heat—much like focusing light with a lens—to concentrate it in a small area. Another intriguing possibility is thermal cloaking, Maldovan says: materials that prevent detection of heat, just as recently developed metamaterials can create "invisibility cloaks" to shield objects from detection by visible light or microwaves.

Fatal error: Declaration of RulesRuleUI::form(&$form, &$form_state, $options = Array) must be compatible with RulesActionContainerUI::form(&$form, &$form_state, $options = Array, $iterator = NULL) in /customers/6/b/4/ on line 0